Resources

Main Menu

  • SRPBanner

    Summer Research Program 2016

    Faculty Research Mentors

    FACULTY MEMBER:

    Dr. Richard Bastian

    Lecturer

    DEPARTMENT: Mathematics

    E-MAIL:  rbastian@monmouth.edu 

    RESEARCH PROJECT TITLE & DESCRIPTION:

    1. A Model Relating Obesity with Spinal Injuries in Dogs. Consulting project in conjunction with Red Bank Veterinary Hospital. Statistical analysis and interpretation of data.

    2. Post-operative Side Effects of Gastrointestinal Surgery in Cats and Dogs. Consulting project in conjunction with Garden State Veterinary Specialists. Statistical analysis and interpretation of data.

    3. Comparing Effectiveness of Continuous vs Intermittent Infusion of Antibiotics in Dogs. Consulting project in conjunction with Massachusetts Veterinary Referral Hospital. Statistical analysis and interpretation of data.

    4. Analyzing Small Sample Data from Genetics Experiments Relating to Brain Cancer (Collaboration with Dr. Martin Hicks in Biology). Exploration of statistical techniques for analyzing small sample data.

    5. Analysis of Data from Experiments on Brain Cell Disorders in Mice (Collaboration with Dr. Catherine Kubera in Biology). Exploration of advanced statistical analysis techniques for analysis of data.

    6. Predicting the Yield of NJ Vineyard Grapes (Collaboration with Dr. Pedram Daneshgar in Biology). Statistical design, data collection & analysis (types of tests, sample sizes, power, effect sizes, etc.) needed to answer research questions about the new MU vineyard and its use by the NJ wine industry.

    7. PCB Levels in Bluefish in New Bedford, Massachusetts Coastal Waters. Consulting project in conjunction with Sandy Hook NOAA Lab. Statistical analysis of a prior study by Dr. Ashok Deshpande to determine if further conclusions are possible.

    8. The Effect of Normalizing Data on the Outcomes of a Latent Variable Change Analysis using Structural Equation Modeling in R. (Collaboration with Dr. Stacey Lauderdale in the School of Education). An exploration of the technique of latent change analysis in structural equation modeling, using the R programming language.

    PLEASE NOTE: This faculty member is not accepting high school students.


    FACULTY MEMBER:

    Dr. Pedram P. Daneshgar

    Assistant Professor

    DEPARTMENT: Biology/Marine and Environmental Biology and Policy Program

    E-MAIL:  pdaneshg@monmouth.edu 

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Impacts of Anthropogenic Factors on Ecosystem Processes of Coastal Ecosystems

    Coastal ecosystems such as salt marshes and mangrove ecosystems provide several vital ecosystem services from wildlife and fish habitat and shore protection to carbon and nutrient cycling. Anthropogenic factors such as sea level rise, salinity changes, and nitrogen deposition could have major impacts on the services coastal ecosystems provide. Through fieldwork and experiments, we will explore how climate change and other anthropogenic factors affect coastal ecosystem function with a focus on the plant species that dominate these ecosystems.

    PLEASE NOTE: This faculty member is not accepting high school students.


    FACULTY MEMBER:

    Dr. Catherine N. Duckett

    Interim Dean

    DEPARTMENT: School of Science

    E-MAIL: cduckett@monmouth.edu 

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Curriculum Development in Entomology Focused on Ecosystems and Stability

    Urbanization and climate change are causing unprecedented stresses on local communities, because of these changes many terrestrial and aquatic food webs have been compromised. Stable and predictable local ecosystems are critically important to a stable society. Bee and pollinator communities have been in the news recently as especially vulnerable to land use changes and new pesticides. It is easier to communicate importance of bee communities in terms of providing economically valuable services (eg Pollination) to the public than other communities that may provide broader services e.g. song birds reducing mosquito and crop pest populations. Research will focus on developing a lesson plans using local plant/insect and plant/insect/vertebrate systems for active lessons appropriate for a variety of age groups that will provide students lasting understanding of local food webs and ecosystems in general. Two subprojects are planned: Pollinators project will involve using native plants and focus on biodiversity of plants and their pollinators for the elementary level. Will Climate Change really change anything? will explore plant insect interactions at a higher level. All student researcher assistants will collect insects, observe and document feeding patterns, identify plants, write lesson plans in collaboration with the team and participate in either delivery or observation of lessons. Skill in drawing or graphic design should be mentioned in the application. Preference will be given to students with a demonstrated interest in careers in education at any level. This is a 6 week program beginning in late May.

    PLEASE NOTE: This faculty member is not accepting high school students.


    FACULTY MEMBER:

    Dr. Keith Dunton

    Assistant Professor

    DEPARTMENT: Biology

    E-MAIL: kdunton@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Assessment and Inventory of New Jersey Coastal Fisheries.

    Coastal waters of New Jersey and New York act as essential nursery grounds and migratory hotspots to numerous commercially and recreationally important finfish and elasmobranch species. The purpose of this study will be to examine the biology of these local resources with work largely focused on tagging recreational finfish/elasmobranch species through traditional and electronic tagging as well as examining predator-prey dynamics through diet. Work will also include analyzing previously collected fisheries data using Microsoft Access Databases (no experience necessary).

    PLEASE NOTE: This faculty member is not accepting high school students.


    FACULTY MEMBER:

    Professor Gil Eckert

    Instructor

    DEPARTMENT: Computer Science and Software Engineering

    E-MAIL: geckert@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Dispelling the "Fantasy" in Fantasy Sports

    Project participants will engage in research that will uncover the analytics, and predictive and financial modeling of sports fantasy leagues. Researchers will build a “fantasy sport” model and software platform.

    PLEASE NOTE: This faculty member is not accepting high school students.


    FACULTY MEMBER:

    Dr. Martin Hicks

    Assistant Professor

    DEPARTMENT: Biology

    E-MAIL: mhicks@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Engineering, Synthesis and Evaluation of Gene Transfer Vectors for the Delivery of RNA Therapeutics to the Tumor Cell Microenvironment.

    We design, generate and test novel gene transfer vectors directed against genes up-regulated in cancer, specifically glioblastoma multiforme. Our strategy is to deliver the genetic sequences of RNA therapy molecules that target the transcripts of receptor tyrosine kinases (RTK). Ultimately, the RNA therapies modify the expression and function of RTKs. Current strategies include 1) anti-sense RNA therapy molecules to alter RTK pre-mRNA splicing 2) anti-sense RNA therapy to effectively destabilize and block RTK expression 3) and effective delivery of RNA aptamers to block RTK activation.

    High School students are encouraged to apply to this project.


    FACULTY MEMBER:

    Professor Robert Kelly

    Adjunct Professor

    DEPARTMENT: Computer Science and Software Engineering

    E-MAIL: rkelly@monmouth.edu 

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Dynamic Real-Time Mobile Object Identification and Location (DYNAMO)

    This project’s focus is on the implementation of a system that identifies and locates mobile objects in real time both indoors and outdoors in an integrated manner. The project has three aspects: the identification and location of the objects, the location and management of the detecting device, and the management of the entire system.

    The identification and location technologies for the objects are several. Data collected from these devices will be processed and displayed on a tableau (user display).

    From an application perspective the key is a collection of mobile objects that are in need of identification and location in real time.

    We will work as a team to explore the use of emerging technologies to enable a cutting edge solution. We will take this as far as our innovation and insights allow. This will be fun. Students interested in this project should have one or more of the following skills:

    • Some coding experience preferably in Java or some version of C. Some database experience
    • The ability to take a system perspective
    • The ability to learn a new technology deftly
    • The ability to work in a team
    • Intellectual curiosity
    • The ability to learn from failure

    High School students are encouraged to apply to this project.


    FACULTY MEMBER:

    Dr. Dmytro Kosenkov

    Assistant Professor

    DEPARTMENT: Chemistry and Physics

    E-MAIL: dkosenko@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Designing Next Generation Solar Cells: Modeling Energy Transfer in Biological Chromophores

    Mechanisms of energy transfer in biological molecules will be investigated to find new efficient ways of solar energy conversion into electricity and environmentally friendly fuels. Molecular modeling software based on novel quantum-mechanical methods will be used to obtain detailed molecular-level knowledge of the key mechanisms of light capture by biological and organic molecules—chromophores. High performance/supercomputing systems will be employed to carry out the simulations.

    PLEASE NOTE: This faculty member is not accepting high school students.


    FACULTY MEMBER:

    Dr. Cathryn Kubera

    Assistant Professor

    DEPARTMENT: Biology

    E-MAIL: ckubera@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Project 1: The Role of GABA in Neuronal Precursor Proliferation

    This project will examine the role of inhibitory neurotransmitter GABA in brain cell proliferation during development. Following identification of successful small-inhibiting RNAs, constructs to knock down GABA receptor expression will be electroporated into the developing chick embryo brain. Neuronal proliferation will be assessed by injecting and later staining for BrdU, which will be incorporated into the DNA of dividing cells.

    Project 2: Intersections between mTOR and calcium signaling pathways

    Mammalian target of rapamycin (mTOR) is a protein that plays a number of important roles during development as a regulator of protein translation, cell growth and proliferation.This study will examine the interactions of mTOR with calcium and other signaling molecules underpinning neuron process extension and migration using techniques such as quantitative PCR, Western blotting, immunohistochemistry and microscopy.

    Project 3: Computer assisted analysis of in vitro cell dynamics

    This project involves using computer-assisted advanced imaging analysis techniques to examine cellular behaviors such as movement, migration, and proliferation in order to characterize the role of mTOR in cell motility.

    High School students are encouraged to apply to this project.


    FACULTY MENTOR

    Dr. Raman Lakshmanan

    Project 1:
    Pharma-MD - Mobile App for Physicians to Access Patient Copay Assistance Programs Offered by a Pharmaceutical Manufacturer.

    Pharmaceutical companies offer copay assistance to patients on high value prescription medications. TMG administers these programs for major pharmaceutical companies. The project involves mobile apps development on iPhone and Android phones. The app will be used by physicians to quickly review description of the programs and details on patient assistance. The content for apps will be served from a cloud based servers.

    Project 2:
    Copay-BI - A Cloud-based Business Intelligence Portal to Monitor Effectiveness of Copay Assistance Programs

    Copay assistance programs collect hundreds of thousands information data records for patients, physicians, clinics, specialty pharmacies, financial networks, etc. To monitor the effectiveness of these programs in real time, Business Intelligence tools have to be developed to present data stored in cloud-based systems in a fast, secure and efficient manner on multiple platforms (desktop, tablets and phones). The project involves development of a business intelligence reporting and analysis portal using latest cloud-based tools.


    FACULTY MENTOR

    Dr. James P. Mack

    Professor

    DEPARTMENT: Biology

    E-MAIL: mack@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Development of Emollients of Essential Oils and Methylglyoxal to Combat Multidrug Resistant Bacteria in Healthcare Settings Globally

    Cassia and Methylglyoxal (found in Manuka Honey) will be combined with carrier oils in various dilutions to determine their efficacy in inhibiting the growth of two hospital acquired multidrug resistant bacteria using the Kirby-Bauer disk diffusion method. The bacteria that will be tested are: Pseudomonas aeruginosa and Acinetobacter baumannii.

    PLEASE NOTE: This faculty member is not accepting high school students.


    FACULTY MEMBER:

    Dr. Greg Moehring

    Associate Professor

    DEPARTMENT: Chemistry and Physics

    E-MAIL: gmoehrin@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Rearrangement of Seven-Coordinate Metal Complexes

    We have had some recent success in identifying isomers of eight-coordinate metal, in determining the exchange rates between these isomers at various temperatures, and in using the rate versus temperature data to determine the thermodynamic parameters of the transition state between the isomers. Seven-coordinate complexes exhibit temperature-dependent fluxional behavior that is similar to the behavior of eight-coordinate complexes. This project will attempt to prepare a small set of seven-coordinate complexes with symmetries that will allow for the spectroscopic identification of isomers. If successful in preparing such complexes, those complexes will be used to study the interconversion of seven-coordinate isomers in order to compare their properties to the properties of our previously studied eight-coordinate systems.

    PLEASE NOTE: This faculty member is not accepting high school students


    FACULTY MEMBER:

    Professor James A. Nickels

    Marine Scientist

    DEPARTMENT: Urban Coast Institute / Biology

    E-MAIL: jnickels@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Mapping of Plastics in the Coastal Marine Environment

    Field and lab work collecting and quantifying marine plastics in local waters using a manta trawl to collect samples. Areas of interest include Barnegat Bay, Manasquan, Shark, Navesink and Shrewsbury Rivers, Raritan and Sandy Hook Bays. Collaborating with local NGO’s and researchers at other academic institutions. Additional work will involve water level mapping and field support for other projects.

    PLEASE NOTE: This faculty member is not accepting high school students


    FACULTY MEMBER:

    Dr. Tsanangurayi Tongesayi

    Associate Professor

    DEPARTMENT: Chemistry and Physics

    E-MAIL: ttongesa@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Microplastics and the Biogeochemistry of Toxic Metals in the Aquatic Environment

    The main goal of this project is to study mircoplastics in the aquatic environment with respect to their origin; chemical and physical properties; mobility; surface reactivities; and surface biogeochemistry of adsorbed chemical pollutants. Microplastics are comprised of synthetic polymer products manufactured as additives in various consumer products such as hand, facial, and body cleansers; small pieces from degrading industrial and domestic polymer products; polymeric fibers released by washing of synthetic clothing and plastic abrasion during dishwashing; and preproduction pellets that are used in plastic production. They occur in various shapes that include spheres, fibers, and fragments. They enter the aquatic environment primarily via improper waste disposal, insufficient waste management, and urban runoffs. In the aquatic environment, microplastics harbor microbes and adsorb chemical pollutants. As a result, microplastics can introduce pathogenic organisms and chemical toxicants from wastewater to the less contaminated freshwater and marine habitats. They can also enter food webs through filter feeders.

    PLEASE NOTE: This faculty member is not accepting high school students.


    FACULTY MEMBER:

    Dr. Jeffrey H. Weisburg

    Specialist Professor

    DEPARTMENT: Biology

    E-MAIL: jweisbur@monmouth.edu

    RESEARCH PROJECT TITLE & DESCRIPTION:

    Multidrug resistance, the principal mechanism by which many cancers develop resistance to chemotherapy drugs, is a major factor in the failure of many forms of chemotherapy. One way to overcome this resistance is the use of nutriceuticals. Nutraceuticals are any products derived from food sources with extra health benefits in addition to the basic nutritional value found in foods. One of the most powerful nutraceuticals is pomegranate extract (PE). Previously, PE has been shown to have antipoliferative and proapoptotic properties in human oral cancers and prostate cancers We will be attempting to reserve the effects of in vitro drug resistance using a leukemia model by treating the cells with pomegranate extract.

    PLEASE NOTE: This faculty member is not accepting high school students.